ngọn cờ
Trang chủ

buồng thử nghiệm sốc nhiệt độ

buồng thử nghiệm sốc nhiệt độ

  • Got Your Temperature Test Chamber? Here’s What You Must Do Next!
    Nov 28, 2025
    I. Receipt Inspection  1. Physical Verification Confirm equipment model, specifications, and serial number match the contract/packing list to avoid wrong delivery. Inspect the cabinet, door, and control panel for transportation damage (dents, deformation) and ensure pipelines/wiring are intact without loosening. 2. Accessory & Document Check Required accessories: Power cord, sample shelves, sealing rings, wrenches, and other tools (verify against the packing list). Technical documents: Operation/maintenance manual, calibration certificate, warranty card, and qualification certificate (all mandatory for after-sales service). 3. Abnormal Handling In case of damage or missing items: Immediately take photos (overall equipment, damaged details, packing list), notify the supplier within 24 hours to submit a claim, and sign the "Acceptance Objection Form" for documentation. II. Installation & Deployment (Compliant Installation Ensures Performance) 1. Environment Requirements (Must Meet the Following) Floor: Flat and sturdy, with load-bearing capacity ≥1.2 times the equipment weight (to avoid test errors caused by vibration). Space: ≥30cm ventilation gap around the cabinet; keep away from heat sources, water sources, dust, and strong electromagnetic interference. Power supply: Match the rated voltage (e.g., 380V three-phase five-wire/220V single-phase), grounding resistance ≤4Ω, and equip an independent air switch (power ≥1.2 times the equipment's rated power). Environment: Room temperature 15-35℃, humidity ≤85%RH (no condensation); water-cooled models require pre-connected cooling water circuits meeting specifications. 2. Basic Installation Steps Level the equipment: Adjust anchor bolts and use a level to confirm horizontal alignment (to prevent uneven stress on the refrigeration system). Wiring inspection: Connect the power supply per the manual and ensure correct neutral/grounding connections (a common cause of electrical failures). Consumable check: Confirm refrigerant and lubricating oil (if applicable) are properly filled with no leakage. III. Commissioning (Core: Verify Performance Compliance) 1. First Startup Procedure (1) Recheck power/pipeline connections before power-on; switch on after confirmation. (2)Panel self-test: Ensure the display shows no error codes and buttons/indicators function normally. (3)No-load operation (2-4 hours): Set a common temperature range (e.g., -40℃~85℃) and monitor temperature fluctuation ≤±0.5℃ (meets industrial standards). Check door sealing (no obvious air leakage), operating noise ≤75dB, and normal start/stop of refrigeration/heating systems. 2. Load Verification (Simulate Actual Usage) Place a load equivalent to the test sample (weight/volume ≤80% of the equipment's rated load) without blocking air ducts. Set the target temperature and holding time; record if the heating/cooling rate meets technical parameters (e.g., -40℃~85℃ heating time ≤60 minutes). Alarm test: Simulate power failure, over-temperature, or door-open timeout to confirm timely alarm response (audio-visual alarm + shutdown protection). IV. Emergency Handling & After-Sales Coordination 1. Common Fault Resolution Error codes: Refer to the "Troubleshooting" section in the manual (e.g., E1=Over-temperature, E2=Power abnormality). Sudden failures: (e.g., electric leakage, abnormal noise, refrigeration failure) Immediately cut off power, stop use, and contact the supplier's technical support (do not disassemble independently). 2. After-Sales Support Retain the supplier's after-sales contact (phone + email) and confirm the warranty period (usually 1 year for the whole machine). Maintenance records: Request a "Maintenance Report" after each service and file it for future tracing.
    ĐỌC THÊM
  • Core Faults and Troubleshooting of Thermal Shock Chambers
    Nov 27, 2025
    I. Temperature-related Issues Failure to reach set temperature: Check operation of heater/compressor, replace if damaged; calibrate sensor, replenish refrigerant if leaking; replace aging sealing strips. Slow shock rate: Clean air duct filter/condenser dust; inspect fan and switching valve, lubricate or replace if stuck.  Large temperature fluctuation: Calibrate thermostat PID parameters; reduce sample load (≤30% of chamber volume), place evenly without blocking air ducts. II. Refrigeration-related Issues Slow cooling in low-temperature zone: Clean condenser fins; detect leaks and replenish refrigerant; activate defrost program or replace expansion valve. Frequent compressor on/off: Stabilize power supply voltage, improve equipment room ventilation; replenish refrigerant or replace refrigeration oil. High-pressure alarm: Clean condenser and inspect cooling fan. III. Mechanical-related Issues Poor door sealing: Adjust door latch, replace aging sealing strips; calibrate chamber levelness. Stuck transfer mechanism: Clean guide rail debris and lubricate; calibrate position sensor. Abnormal noise (fan/valve): Add lubricating grease, replace worn bearings; clean valve impurities. IV. Electrical-related Issues Failure to start: Reset emergency stop button, inspect power supply/air switch; rewire if grounding is poor. Abnormal display: Reconnect cable, test power module; restore factory settings after backing up parameters. Alarm code triggered: Troubleshoot per code prompt (e.g., E1 overheating: check heater/sensor); contact manufacturer for repeated alarms. V. Key Notes Power off before troubleshooting; refrigeration system maintenance requires professional operation. Clean filter weekly, inspect seals monthly, and calibrate sensor annually.
    ĐỌC THÊM
  • Key Differences in Using Environmental Test Chambers Between Summer and Winter
    Nov 26, 2025
    The core difference lies in the impact of ambient temperature and humidity variations on equipment operating efficiency, energy consumption, and test accuracy. Targeted measures for temperature/humidity control, heat dissipation/anti-freezing, and maintenance are required. Specific differences and precautions are as follows: I. Core Difference Comparison Table Dimension Summer Operation Characteristics Winter Operation Characteristics Ambient Conditions High temperature & high humidity (room temp: 30-40℃, RH: 60%-90%) Low temperature & low humidity (room temp: 0-15℃, RH: 30%-60%) Equipment Load High refrigeration system load, prone to overload High heating system load; humidification compensation required for certain models (e.g., temperature-humidity chambers) Impact on Test Accuracy High humidity causes condensation, affecting sensor accuracy Low temperature leads to pipeline freezing; low humidity may reduce stability of humidity tests Energy Consumption High refrigeration energy consumption High heating/humidification energy consumption   II. Season-Specific Precautions (1) Summer Operation: Focus on High Temperature/High Humidity/Overload Prevention 1. Ambient Heat Dissipation Management Reserve ≥50cm ventilation space around the chamber; avoid direct sunlight or proximity to heat sources (e.g., workshop ovens, air conditioner outlets). Ensure laboratory air conditioning operates normally, maintaining room temperature at 25-30℃. If room temp exceeds 35℃, install industrial fans or cooling devices to assist heat dissipation and prevent refrigeration system overload protection triggered by high ambient temperatures. 2. Moisture & Condensation Control Regularly clean chamber door gaskets with a dry cloth to prevent sealant aging and air leakage caused by high humidity. After humidity tests, open the chamber door promptly for ventilation and wipe off condensation to avoid moisture damage to sensors (e.g., humidity sensors). 3. Equipment Operation Protection Avoid prolonged continuous operation of extreme low-temperature tests (e.g., below -40℃). Recommend shutting down for 1 hour after 8 hours of operation to protect the compressor. Periodically inspect refrigeration system radiators (condensers) and remove dust/debris (blow with compressed air monthly) to ensure heat dissipation efficiency. (2) Winter Operation: Focus on Anti-Freezing/Low Humidity/Startup Failure Prevention 1. Ambient Temperature Guarantee Maintain laboratory temperature above 5℃ (strictly follow 10℃ if specified as the minimum operating temperature) to prevent pipeline freezing (e.g., refrigeration capillaries, humidification pipes). For unheated laboratories, install an insulation cover (with ventilation holes reserved) or activate the "preheating mode" (if supported) before testing. 2. Humidification System Maintenance Use distilled water in the humidification tank to avoid pipe blockage from impurity crystallization at low temperatures. Drain water from the humidification tank and pipelines during long-term non-use to prevent freezing-induced component damage. 3. Startup & Operation Specifications In low-temperature environments, activate "standby mode" for 30 minutes preheating before setting test parameters to avoid compressor burnout from excessive startup load. If startup fails (e.g., compressor inactivity), check power voltage (prone to instability during winter peak hours) or contact after-sales to inspect pipeline freezing. 4. Low Humidity Compensation For low-humidity tests (e.g., ≤30% RH), winter dryness may cause rapid humidity. Adjust humidification frequency appropriately and use the "humidity calibration" function to reduce fluctuations. III. General Precautions (All Seasons) Calibrate temperature/humidity sensors quarterly to ensure data accuracy. Clean air filters monthly to maintain airflow circulation. Arrange test samples evenly to avoid blocking internal air ducts and ensure temperature/humidity uniformity. For long-term non-use: Run the chamber for 1 hour monthly in summer (moisture prevention) and drain pipeline water in winter (freezing prevention). By addressing seasonal environmental variations, equipment service life can be extended, and test failures caused by temperature/humidity fluctuations avoided—aligning with the high precision and stability requirements of the industrial test equipment industry.    
    ĐỌC THÊM
  • Differences Between High-Low Temperature Test Chamber and Thermal Shock Chamber
    Nov 26, 2025
    In industrial product reliability testing, high and low temperature test chambers and temperature shock test chambers are core environmental testing equipment, both simulating extreme temperatures to verify product durability. However, they differ fundamentally: the former focuses on gradual temperature-humidity cycles, while the latter on instantaneous thermal shock. Clarifying these differences is key to matching test needs and ensuring data validity. 1. Rate High-Low Temperature Test Chamber: Slow, with a regular rate of 0.7∼1 ℃/min, and rapid versions can reach 5∼15 ℃/min. Thermal Shock Chamber: Abrupt, with instant switching. 2. Structure High-Low Temperature Test Chamber: Single-chamber structure, integrating heating, refrigeration, and humidification functions. Thermal Shock Chamber: Multi-chamber structure, including high-temperature chamber, low-temperature chamber, and test chamber. 3. Temperature Continuity High-Low Temperature Test Chamber: The temperature changes smoothly without any "shock sensation". Thermal Shock Chamber: The temperature changes by leaps and bounds, with a common temperature range of −40∼150℃. 4. Application High-Low Temperature Test Chamber: Suitable for temperature endurance testing of general products such as electronic devices, household appliances, and building materials. Thermal Shock Chamber: Suitable for shock resistance testing of temperature-sensitive products such as automotive electronics, semiconductors, and aerospace components. 5. Core Position & Test Purpose High-Low Temperature Test Chamber: Simulates gradual temperature (and humidity) changes to test product stability under slow thermal variation (e.g., electronic devices’ performance after gradual cooling to -40℃ or heating to 85℃). Thermal Shock Chamber: Simulates abrupt temperature switching (≤30s transition) to test product resistance to extreme thermal shock (e.g., auto parts adapting to drastic day-night temperature changes, aerospace components’ tolerance to sudden high-low temperature shifts). Summary The high and low temperature test chamber is a "slow-paced endurance test", while the temperature shock chamber is a "fast-paced explosive power challenge". Just based on whether the product will encounter "sudden cold and heat" in the actual usage scenario, the precise selection can be made.
    ĐỌC THÊM
  • 3-Zone Thermal Shock Chamber: Introduction & Applications
    Nov 25, 2025
    The 3-zone thermal shock chamber is a test device for simulating extreme temperature shock environments, composed of a high-temperature chamber, a low-temperature chamber, and a test chamber. I.  Detailed Introduction 1.1 Working Principle The high-temperature chamber achieves precise temperature control via heaters and a PID logic circuit, while the low-temperature chamber maintains low temperatures through a refrigeration system. During testing, the sample stays stationary in the test chamber; the control system switches dampers to rapidly inject high/low-temperature air into the test chamber for thermal shock tests. 1.2 Structural Features Adopting an upper-middle-lower structure (upper: high-temperature; lower: low-temperature; middle: test chamber), its internal/external materials are mostly stainless steel. Insulation materials (superfine glass fiber, polyurethane foam) ensure excellent thermal insulation. A test hole on the left facilitates external power supply and load wiring for component testing. 1.3 Performance Parameters Programmable temperature shock range: typically -40℃ to +150℃; temperature control accuracy: ±0.2℃; chamber uniformity: ±2℃; maximum shock duration: 999h59min; adjustable cycles: 1-999 times. 1.4 Control & Operation Equipped with a large color LCD touch controller (Chinese/English interface), it supports independent setting of multiple test specifications, and features real-time status display and curve visualization. 1.5 Safety Protection Comprehensive protections include power overload, leakage, control circuit overload/short-circuit, compressor, grounding, and over-temperature protection, ensuring reliable long-term operation. II. Main Applications Electronics Industry: Tests performance/reliability of electronic components, PCBs, semiconductors under extreme temperatures to ensure stable operation and reduce after-sales failures. Automotive Industry: Evaluates temperature resistance of auto parts (engine, battery, electronic control system, interior materials) by simulating climatic temperature changes, guaranteeing vehicle performance and safety. Aerospace Field: Tests aerospace electronics, sensors, aero-engine blades, and materials under thermal shock to ensure flight safety. Materials Science: Assesses thermal expansion/contraction and weather resistance of materials, providing data for R&D and application of new materials.
    ĐỌC THÊM
  • What should we pay attention to when using a thermal shock test chamber (water-cooled)?
    Nov 22, 2025
    I. Before Operation Use deionized water or distilled water as cooling water (to prevent scale formation); control temperature at 15-30℃, pressure at 0.15-0.3MPa, flow rate ≥5L/min. Clean the Y-type filter element in advance to ensure unobstructed water flow. Inspect water supply/drainage pipelines for secure connections, no leakage or kinking; keep drainage ports unobstructed with a height difference ≥10cm. Ensure the environment is ventilated and dry, grounding resistance ≤4Ω, and power supply (AC380V±10%) stable. Keep the inner chamber and shelves clean. Sample volume ≤1/3 of effective capacity, with weight evenly distributed on shelves. Seal moisture-sensitive parts of non-hermetic samples to avoid condensation affecting test accuracy. II. During Operation Real-time monitor cooling water pressure, flow rate and temperature. Immediately shut down for troubleshooting (pipeline blockage, leakage or chiller failure) if pressure drops sharply, flow is insufficient or temperature exceeds 35℃. Set high/low temperature parameters per GB/T, IEC and other standards (not exceeding rated range); control heating/cooling rate ≤5℃/min. Prohibit instantaneous switching between extreme temperatures. Do not open the door arbitrarily during operation (to prevent scalding/frostbite from hot/cold air). Use protective gloves for emergency sample handling. Shut down immediately for maintenance upon alarm (overtemperature, water shortage, etc.); prohibit forced operation. III. After Test Turn off power and cooling water inlet/outlet valves; drain residual water in pipelines. Clean the water tank and replace water monthly; add special water stabilizer to extend pipeline service life. Wipe the inner chamber and shelves after temperature returns to room temperature. Clean the air filter (1-2 times monthly); inspect pipeline seals and replace aging/leaking ones promptly. For long-term non-use: Power on and run for 30 minutes monthly (including water cooling system circulation), inject anti-rust protection fluid into pipelines, and cover the equipment with a dust cover in a dry, ventilated place. IV. Prohibitions Prohibit using unqualified water (tap water, well water, etc.) or blocking filters/drainage ports (to avoid affecting heat dissipation). Prohibit overloading samples or unauthorized disassembly/modification of water cooling pipelines/core components. Repairs must be performed by professionals. Prohibit frequent start-stop (wait ≥5 minutes after shutdown before restarting). Prohibit placing flammable, explosive or corrosive substances.
    ĐỌC THÊM
  • Top Environmental Test Chamber Partner, Your Trusted Choice
    Nov 08, 2025
        Environmental test chambers simulate complex conditions such as high/low temperatures and humidity, widely serving industries including electronics, automotive, aerospace, materials, and medical devices. Their core function is to verify the tolerance of products and materials, enabling early defect detection, ensuring product reliability, facilitating industry compliance, and reducing after-sales costs. They are critical equipment for R&D and quality control.     Founded in 2005, Lab Companion specializes in the R&D and manufacturing of environmental simulation equipment. Since its establishment, the company has deeply cultivated core technologies and obtained multiple patent certifications, demonstrating strong technical capabilities in this field. Our cooperative clients cover numerous industries such as aviation, aerospace, ordnance, marine engineering, nuclear power, communications, automotive, rail transit, electronics, semiconductors, and new energy.         Lab Companion offers a comprehensive product portfolio, including high-low temperature alternating humidity test chambers, rapid temperature change test chambers, thermal shock test chambers, walk-in environmental test chambers, high-low temperature low-pressure test chambers, temperature-humidity-vibration combined test chambers, and customized non-standard environmental test equipment. Each product line provides multiple options for models, sizes, and temperature-humidity parameters to accurately meet diverse application needs.         In addition, we deliver premium pre-sales and after-sales services, offering full-cycle support from product selection to after-sales guarantee to ensure your peace of mind. Should you have any cooperation intentions or related inquiries, please feel free to contact us at any time!
    ĐỌC THÊM
  • Hiệu suất của buồng thử nghiệm sốc nhiệt độ cao và thấp là gì? Hiệu suất của buồng thử nghiệm sốc nhiệt độ cao và thấp là gì?
    Jun 14, 2025
    Buồng thử nghiệm va đập nhiệt độ cao và thấp được thiết kế để kiểm tra độ tin cậy của các sản phẩm công nghiệp ở cả nhiệt độ cao và thấp. Nó được sử dụng để đánh giá hiệu suất của các linh kiện và vật liệu trong các ngành công nghiệp như điện tử, ô tô, hàng không vũ trụ, đóng tàu và vũ khí, cũng như trong các cơ sở giáo dục đại học và nghiên cứu, dưới các chu kỳ nhiệt độ cao và thấp xen kẽ. Các tính năng chính bao gồm:Độ dẫn điện tuyệt vời: Cáp hợp kim, được chế tạo bằng cách bổ sung các nguyên tố đất hiếm và các nguyên tố khác từ Trung Quốc như đồng, sắt, silic, v.v., trải qua quá trình xử lý đặc biệt để đạt được độ dẫn điện cao hơn 62% so với đồng. Sau quá trình này, diện tích tiết diện của lõi hợp kim tăng từ 1,28 đến 1,5 lần, giúp khả năng dẫn điện và độ sụt áp của cáp tương đương với cáp đồng, thay thế hiệu quả đồng bằng vật liệu hợp kim mới.Tính chất cơ học vượt trội: So với cáp đồng, hiệu suất phục hồi của buồng thử nghiệm va đập ở nhiệt độ cao và thấp thấp thấp hơn 40% và độ linh hoạt cao hơn 25%. Nó cũng có đặc tính uốn cong tuyệt vời, cho phép bán kính lắp đặt nhỏ hơn nhiều so với cáp đồng, giúp việc lắp đặt và kết nối các đầu nối dễ dàng hơn. Công thức đặc biệt và quy trình xử lý nhiệt làm giảm đáng kể độ rão của dây dẫn dưới tác động của nhiệt và áp suất, đảm bảo các kết nối điện của cáp hợp kim ổn định như cáp đồng.Hiệu suất an toàn đáng tin cậy: Buồng thử nghiệm va đập ở nhiệt độ cao và thấp đã được chứng nhận nghiêm ngặt bởi UL tại Hoa Kỳ và đã được sử dụng trong 40 năm tại các quốc gia như Hoa Kỳ, Canada và Mexico mà không gặp bất kỳ sự cố nào. Dựa trên công nghệ tiên tiến của Mỹ, buồng thử nghiệm đã được thử nghiệm và kiểm định bởi nhiều tổ chức trong nước, đảm bảo độ an toàn đáng tin cậy.Tiết kiệm hiệu suất kinh tế: Khi đạt được cùng hiệu suất điện, chi phí mua sắm trực tiếp buồng thử nghiệm va đập ở nhiệt độ cao và thấp thấp hơn từ 20% đến 30% so với cáp đồng. Vì cáp hợp kim chỉ nặng bằng một nửa cáp đồng và có đặc tính cơ học tuyệt vời, việc sử dụng cáp hợp kim có thể giảm hơn 20% chi phí vận chuyển và lắp đặt đối với các tòa nhà thông thường và hơn 40% đối với các tòa nhà có nhịp lớn. Việc sử dụng buồng thử nghiệm va đập ở nhiệt độ cao và thấp sẽ có tác động to lớn đến việc xây dựng một xã hội sử dụng tài nguyên hiệu quả.Khả năng chống ăn mòn tuyệt vời: Khi tiếp xúc với không khí ở nhiệt độ cao, cáp hợp kim ngay lập tức hình thành một lớp oxit dày đặc, có khả năng chống chịu cao với nhiều dạng ăn mòn khác nhau, phù hợp với môi trường khắc nghiệt. Ngoài ra, cấu trúc bên trong lõi hợp kim được tối ưu hóa và việc sử dụng vật liệu cách điện polyethylene liên kết ngang silane giúp kéo dài tuổi thọ của cáp hợp kim hơn 10 năm so với cáp đồng.
    ĐỌC THÊM

để lại tin nhắn

để lại tin nhắn
Nếu bạn quan tâm đến sản phẩm của chúng tôi và muốn biết thêm thông tin chi tiết, vui lòng để lại tin nhắn ở đây, chúng tôi sẽ trả lời bạn sớm nhất có thể.
nộp

Trang chủ

Các sản phẩm

WhatsApp

liên hệ với chúng tôi