ngọn cờ
Trang chủ

Test Equipment

Test Equipment

  • Maintenance Methods for Industrial Precision Oven
    Nov 20, 2025
    As core industrial equipment for precise temperature control, drying and curing, precision ovens’ operational stability directly impacts product quality and production efficiency. Scientific maintenance extends service life and ensures process parameter accuracy. Below are key methods divided into daily basic maintenance and regular in-depth maintenance. I. Daily Basic Maintenance: Safeguard Fundamental Operation Daily maintenance, the first line of stable operation defense, is performed before startup, during operation and after shutdown—simple yet critical. 1. Comprehensive Cleaning: Eliminate Impurities Wipe the oven cavity, shelves and door seal daily to remove debris, dust, cured stains or oil. Use neutral detergent and a clean cloth to avoid cavity corrosion. Regularly clean the exterior and heat dissipation holes for unobstructed heat dissipation. 2. Parameter & Safety Checks: Ensure Accuracy and Safety Verify that temperature controller, timer and other parameters match process requirements before startup, and check for stable display without drift. Inspect door interlock sensitivity, power cords, heating tube terminals and cooling fan for abnormalities. Confirm emergency stop buttons and over-temperature protection devices function properly to eliminate hidden dangers. 3. Standardized Operation: Reduce Human-induced Wear Avoid overloading workpieces and ensure proper spacing for hot air circulation to prevent local overheating. Follow the manual for temperature rise/drop—no sudden startup/shutdown or drastic adjustments to avoid furnace cracking. Turn off main power only when temperature drops below 50℃ to extend heating element life. II. Regular In-depth Maintenance: Enhance Core Performance Recommended monthly or quarterly, regular maintenance focuses on core components and requires professional technicians. 1. Heating & Circulation System Overhaul: Ensure Efficiency Inspect heating tubes for oxide layers, scale or abnormal resistance (replace if needed), and clean/fasten junction box terminals with insulating grease. Disassemble fan impellers to remove dust and oil, lubricate bearings, replace damaged seals and adjust air duct baffles for uniform hot air circulation. 2. Temperature Control Calibration: Improve Accuracy Calibrate temperature sensors with a standard thermometer—adjust parameters or replace sensors if deviation is excessive. Inspect signal transmission lines for interference or poor contact. Verify multi-stage heating curve accuracy for programmable ovens. 3. Furnace Structure Maintenance: Extend Service Life Check insulation layers for damage and refill insulation material if heat dissipation is abnormal. Replace aged or deformed door seals. Repair the cavity’s high-temperature resistant coating to prevent rusting.
    ĐỌC THÊM
  • Common Faults and Practical Solutions for High-Low Temperature Humidity Test Chambers
    Nov 19, 2025
    High and low temperature humidity test chambers are key reliability testing equipment, widely used in electronics, automotive and biomedicine. Their stability directly affects test accuracy. This article summarizes common faults and solutions for efficient troubleshooting. I. Temperature-related Faults: Core Impact on Test Accuracy 1. Failure to Reach Set Temperature Fault Performance: Fails to reach target temperature when heating; slow or no cooling.Possible Causes: Abnormal power voltage, burned heater, compressor failure, fan stop, air duct blockage.Solutions: Verify power matches rated specs (220V/380V); check fan operation and clean duct debris; contact professionals to replace faulty parts if heater/compressor fails. 2. Large Temperature Fluctuation and Poor Uniformity Fault Performance: Excessive temperature difference in the chamber or frequent fluctuations near set value.Possible Causes: Abnormal fan speed, damaged air duct seals, over-dense samples blocking airflow.Solutions: Arrange samples for ventilation; check fan stability and replace damaged seals promptly. 3. Severe Temperature Overshoot Fault Performance: Temperature overshoots set value significantly before dropping.Possible Causes: Improper controller settings, energy regulation system failure.Solutions: Restart to reset parameters; if unresolved, have technicians calibrate controller or overhaul regulation modules. II. Humidity-related Faults: Directly Linked to Test Environment Stability 1. Failure to Reach Set Humidity Fault Performance: Slow or no humidification.Possible Causes: Empty humidification tank, faulty water level sensor, burned humidifier tube, blocked solenoid valve.Solutions: Replenish water; clean valve filter; replace tube or repair sensor if humidifier fails to heat. 2. High Humidity That Cannot Be Reduced Fault Performance: Humidity remains above set value; dehumidification fails.Possible Causes: Faulty dehumidification system, poor chamber sealing, high ambient humidity.Solutions: Check door seals and reduce ambient humidity; report for repair if dehumidification module fails. 3. Abnormal Humidity Display Fault Performance: Humidity reading jumps, disappears or deviates greatly from reality.Possible Causes: Aging humidity sensor, contaminated probe.Solutions: Wipe probe with clean cloth; calibrate or replace sensor if inaccuracy persists. III. Operation and Circulation Faults: Ensure Basic Equipment Operation 1. Fan Not Rotating or Making Abnormal Noise Possible Causes: Motor damage, foreign objects in fan blades, worn bearings.Solutions: Clean debris after power-off; replace motor or bearings if fault persists. 2. Compressor Abnormality Fault Performance: Compressor fails to start or stops frequently after starting.Possible Causes: Power phase loss, overload protection trigger, refrigerant leakage.Solutions: Check three-phase wiring; retry after overload reset; report for refrigerant and compressor inspection if fault recurs. 3. Equipment Alarm Fault Performance: Alarms like "phase loss" or "overload" activate.Possible Causes: Triggered protection from wrong phase sequence, unstable voltage or overheated components.Solutions: Troubleshoot per alarm; restart after 30-minute cooldown for overload; report if ineffective. IV. Core Notes 1. Always power off before troubleshooting to avoid shock or component damage.2. Contact professionals for complex repairs (compressors, refrigerants, circuit boards); do not disassemble yourself.3. Regularly clean air ducts, filters and sensors to reduce over 80% of common faults.
    ĐỌC THÊM
  • Walk-in Environmental Test Chambers: The Hidden Tech Gem in Industrial Testing
    Nov 18, 2025
    In industrial manufacturing's "quality defense line", walk-in environmental test chambers are low-key yet critical. As "environmental simulation masters", they replicate extreme conditions from polar cold to tropical heat, testing large equipment and batch products. Their hidden technical strengths merit in-depth exploration. I. Spacious Interior for Flexible Adaptation to Diverse Testing Needs The "walk-in" design is a core breakthrough. With  several to dozens of cubic meters of space, it accommodates large products (automotive parts, electronic devices) and enables batch testing of small/medium items. New energy vehicle battery packs and rail transit systems can be tested integrally without disassembly. Flexible racks and zoning fit various sample shapes, solving traditional equipment's "unfit and unstable" issues. II. Precise Temperature Control for Highly Simulating Diverse Extreme Environments Precise temperature control is its core advantage, with a temperature range of -70℃ to 250℃ and humidity of 20%RH to 98%RH, replicating high-altitude, desert and coastal environments. Using PID algorithms and multi-point sensing, temperature/humidity fluctuations are controlled within ±0.5℃ and ±2%RH, ensuring reliable data. It simulates high-altitude conditions for aerospace and verifies consumer electronics' performance in extremes to support product iteration. III. Energy Conservation and Environmental Protection for Long-term Operating Cost Optimization To address high energy consumption, it adopts variable frequency compressors and low-power heating modules for intelligent power adjustment. Double-layer vacuum insulation reduces heat exchange, and high-end models feature waste heat recovery. Energy consumption is cut by over 30% vs. traditional equipment, saving tens of thousands in annual electricity costs. Stable operation lowers maintenance needs and extends service life, reducing long-term costs. IV. Structural Selection and Customization Services Lab Companion's walk-in chambers have two main structures: integral welded and assembled, with diverse specifications compatible with multiple refrigerants. Assembled models use independent panels fixed by interlocks and reinforcing bolts, simplifying transportation and installation. Integral welded models offer better performance, with wider temperature/humidity ranges and faster temperature change rates. In addition, you can choose a suitable model based on your needs. Lab Companion provides customized services if existing specifications are insufficient . V. Conclusion: The "Core Driving Force" for Industrial Quality Upgrading With large space, precise control, energy efficiency and durability, these chambers are industrial testing's "quality stewards". Critical for improving product reliability in manufacturing transformation, they will upgrade to more precise and intelligent versions to empower industrial high-quality development.
    ĐỌC THÊM
  • Sample Restrictions for All Models of Test Chambers
    Nov 17, 2025
        As core equipment in industrial production and scientific research that accurately simulates complex environmental conditions such as high and low temperatures, and humidity, the safe and stable operation of test chambers not only directly affects the test process, but is also closely related to the characteristics of test samples. To maximize the protection of the performance of the equipment's core components, avoid safety risks during operation, and ensure the accuracy and reliability of the final test data, all models of test chambers have established clear and strict restriction standards for sample selection. Testing and storage of the following models of samples are strictly prohibited. The specific prohibited scope includes: • Flammable substances such as gasoline and ethanol, explosive substances such as gunpowder and acetylene, and volatile substances such as methanol and ether; • Corrosive substances such as strong acids, strong alkalis and various corrosive solvents that may damage the equipment cavity; • Biological samples such as microorganisms, cell tissues and living organisms that may cause pollution or safety hazards; • Samples that are strong electromagnetic emission sources such as high-frequency emission modules, which may interfere with the equipment's control system; • Radioactive substances with radiation hazards such as uranium and cobalt; • Highly toxic substances that pose serious hazards to humans and the environment, such as cyanides and highly toxic pesticides; • All models of samples that may generate flammable, explosive, volatile, highly toxic, corrosive, or radioactive substances due to changes in temperature and humidity during the testing or storage process.     Before starting the test chamber, operators must confirm the specific properties of the samples through professional testing methods or authoritative materials, and strictly abide by the above restriction requirements. If there is any doubt in judging the applicability of the samples, they should consult the technical personnel of the equipment manufacturer or experts in related fields immediately, and must not operate blindly based on experience. This is to avoid equipment cavity damage, control system failure, safety accidents, or serious deviations in test data caused by illegal use.
    ĐỌC THÊM
  • Have You Completed These Critical Checks Before Delivering a High-Low Temperature Humidity Test Chamber?
    Nov 15, 2025
    1. Preparation for Load-bearing and Dimensional Adaptation • The load-bearing capacity of the site floor shall strictly meet the core requirement of ≥500kg/m², which is a key prerequisite for ensuring the long-term stable operation of the equipment and avoiding equipment deformation or safety hazards caused by insufficient load-bearing capacity. • It is necessary to accurately confirm the external dimensions of the test chamber specified in the technical specification in advance. Combined with the on-site actual survey of the transportation and installation path, ensure that the equipment can smoothly pass through all key passage nodes such as elevators, laboratory doors and corridors, so as to avoid delay in delivery and installation due to inconsistent dimensions. 2. Preparation for Installation Site Conditions • The floor of the installation site shall be flat without protrusions and depressions, and the ventilation conditions shall meet the basic standards for equipment operation. At the same time, there shall be no flammable, explosive, corrosive gases or dust in the environment, as such substances will seriously affect the service life of equipment components and the accuracy of test data. • Strong electromagnetic radiation sources such as high-voltage lines and large motors should be actively avoided near the equipment installation location, as strong electromagnetic interference may cause disorder of the equipment control system, thereby affecting the temperature and humidity control accuracy of the test chamber. • A floor drain that meets the drainage standards must be provided within 2 meters of the equipment's refrigeration unit. This requirement is to timely discharge the condensed water generated during the operation of the refrigeration system, so as to avoid water accumulation soaking the equipment or polluting the site environment. • Sufficient maintenance and operation space shall be reserved around the equipment in accordance with specifications. The specific requirements strictly follow the following standards: Area A ≥80cm, Area B ≥60cm, Area C ≥110cm, Area D ≥110cm. Sufficient space is a necessary guarantee for later equipment maintenance, calibration and component replacement.
    ĐỌC THÊM

để lại tin nhắn

để lại tin nhắn
Nếu bạn quan tâm đến sản phẩm của chúng tôi và muốn biết thêm thông tin chi tiết, vui lòng để lại tin nhắn ở đây, chúng tôi sẽ trả lời bạn sớm nhất có thể.
nộp

Trang chủ

Các sản phẩm

WhatsApp

liên hệ với chúng tôi